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Abstract

A new analytic result in acoustics called \Formulation

1B," proposed by Farassat, is used to compute the load-

ing noise from an unsteady surface pressure distribution
on a thin airfoil in the time domain. This formulation is

a new solution of the Ffowcs Williams-Hawkings equation

with the loading source term. The formulation contains a
far-�eld surface integral that depends on the time deriva-

tive and the surface gradient of the pressure on the airfoil,

as well as a contour integral on the boundary of the air-
foil surface. As a �rst test case, the new formulation is

used to compute the noise radiated from a 
at plate, mov-

ing through a sinusoidal gust of constant frequency. The
unsteady surface pressure for this test case is speci�ed

analytically from a result that is based on linear airfoil the-

ory. This test case is used to examine the velocity scaling
properties of Formulation 1B, and to demonstrate its equiv-

alence to Formulation 1A, of Farassat. The new acoustic

formulation, again with an analytic surface pressure, is
then used to predict broadband noise radiated from an air-

foil immersed in homogeneous turbulence. The results are

compared with experimental data previously reported by
Paterson and Amiet. Good agreement between predictions

and measurements is obtained. The predicted results also

agree very well with those of Paterson and Amiet, who
used a frequency-domain approach. Finally, an alternative

form of Formulation 1B is described for statistical analysis

of broadband noise.

Nomenclature

b = airfoil semi-span (m)
c0 = ambient sound speed (m/sec)

f = frequency (Hz)
~f = geometry function for airfoil surface
~F = ~f observed in retarded time (Eq. 2(b))

E� = combination of Fresnel integrals (Eq. 9(g))

g = velocity-to-pressure transfer function
k = !=U , convective wave number (m�1)
�k = kLc=2, reduced frequency

Lc = airfoil chord (m)

L1 = stream-wise integral length scale

`i = correlation length in the \i" direction
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~M = ~V =c0, Mach number vector

Mr = ~M � ~r=r Mach number in radiation direction

M� = ~M � �̂ Mach number in direction of �̂

p = unsteady pressure on upper airfoil surface (Pa)

p0 = sound pressure radiated to observer (Pa)

@p=@s = directional surface pressure gradient (Pa/m)

~r = ~x � ~y, sound radiation vector (m)

Ruu = correlation function of u

Suu = spectral density of u

t = observer time (sec)

U = uniform free-stream speed (m/sec)

u = unsteady stream-wise velocity (m/sec)
~V = airfoil velocity vector (m/sec)
V = local velocity vector magnitude (m/sec)

w = unsteady upwash velocity (m/sec)

~x = [x1; x2; x3]
T , observer position (Fig. 1)

~y = [y1; y2; 0]
T , surface source position (Fig. 1)

� =
p
1�M2

� = c0=f , acoustic wave-length (m)

� = M �k=�2

 = directivity angle (Fig. 5)

�̂ = unit, inward geodesic normal (Fig. 1)

� = radiation direction (Fig. 1)

�0 = ambient density (kg/m3)
� = t � r=c0, source time (sec)

� = random phase variable

! = 2�f , circular frequency (Hz)

1. Introduction

The development of analytical methods to predict noise

radiated from an air
ow over a rigid body has been a

subject of extensive research within the aeroacoustic com-
munity for decades. Research in this area has, in large

part, been motivated by the desire to incorporate the re-

sults of aeroacoustic analysis into an aerodynamic design
methodology. The present work is similarly motivated, and

the resulting formulation should lend itself well to an en-

gineering design-tool suite.

The current work is speci�cally focused on the calcula-

tion of far-�eld noise that results from 
uctuating pressure

on a solid surface. The acoustic analogy1 provides a frame-

work for the development of methods to predict noise from

many types of sources, including noise due to unsteady sur-

face loading. Such noise is mathematically described by

the loading source term, or \dipole term," of the Ffowcs

Williams-Hawkings (FW-H) equation.2 Because the noise

due to an air
ow over a rigid surface is often dominated

by dipole radiation, the acoustic formulations of interest

in this work are determined by solutions of the FW-H

equation with the loading source term, i.e. neglecting the

1

American Institute of Aeronautics and Astronautics



thickness and quadrupole terms.

The solution of the FW-H equation can be written in
many forms. A new solution, called \Formulation 1B" is

presented herein. The types of noise that can be calcu-

lated with the proposed Formulation 1B are most types of
broadband noise, including noise that is dominated by an

airfoil's leading and trailing edges. Formulation 1B is the

simplest loading-noise prediction formula known to date.
This simplicity makes the new formulation highly suitable

for statistical analysis of broadband noise for rotating sur-

faces.

In Section 2, Formulation 1B is derived for the speci�c
case of a 
at plate in rectilinear motion. For low Mach

numbers and distant observers, the dominant term in this

formulation is a far-�eld surface integral that depends on
the time derivative and the surface gradient of the airfoil

surface pressure. The formulation also contains a contour

integral on the boundary of the airfoil surface that includes
the leading and trailing edges. This line integral vanishes

along the trailing edge if the Kutta condition is imposed.

In Section 3, Formulation 1B is used to calculate the

noise radiated from a 
at plate moving through a sinusoidal
gust of constant frequency. The unsteady surface pressure

used in this test case is an analytical result from linearized

airfoil theory that is taken from the work of Amiet.3;4 A
mesh re�nement study is performed to demonstrate the

equivalence of Formulation 1B with Formulation 1A,5 a

previously developed acoustic formulation that is also a
solution of the FW-H equation. Results from this analyt-

ical test case are also used to examine the velocity scaling

properties of Formulation 1B, which are found to be con-
sistent with the results of Curle6 and Ffowcs Williams and

Hall.7 The directivity of the noise induced by a periodic

gust is also examined.

In Section 4, the single-frequency surface pressure in Sec-

tion 3 is extended by spectral representation to serve as an

analytic broadband source model for incident turbulence

noise. This surface pressure is used as input to Formula-
tion 1B to predict broadband noise to the far �eld. The

resulting calculations are compared to experimental data

previously reported by Paterson and Amiet.8 In Section 5,
an alternative acoustic formulation is described for statis-

tical analysis of broadband noise.

2. Acoustic Formulation

Consider a 
at, �nite surface moving in the plane x3=0

along a velocity vector ~V . Let ~f(x1; x2; t) denote a geo-

metric function that is so de�ned that ~f = 0 on the surface

edge, and ~f > 0 on the interior of the surface. Let �̂ = ~r ~f

denote the unit geodesic normal which lies in the plane of

the surface, is normal to the edge, and is directed inward
(See Fig. 1). The velocity vector ~V and the plate's geom-

etry are related to the coordinate axes as pictured in Fig.

1. Note that ~V need not be constant in space or time. The
only stipulation on the velocity is that the motion of the

surface is in the same plane as the surface.

Denote by ~x = [x1; x2; x3]
T the position of an observer,

and by ~y = [y1; y2; 0]
T the position of a source point on the

plate's surface (Fig. 1). The unsteady perturbation pres-

sure p(~y; t) on the surface gives rise to sound that radiates

along ~r = ~x�~y to the observer. This sound is described by

x1

r

θ

(y1, y2, 0)

0

x

(x1, x2, x3)

V

x3

x2

y

ν

e3

( f  > 0)
~

 f  = 0
~

Fig. 1 Schematic for the derivation of Formulation 1B.

p0(~x; t), the perturbation pressure that arrives at the point

(x1; x2; x3) at time t. Both ~x and ~y frames of reference are

considered �xed relative to the undisturbed medium. For
some of the subtle mathematical details in the following

derivation, see Ref. 9.

From the FW-H equation, the loading noise is given by

a solution of

1

c20

@2p0

@t2
�r2

p
0 = �~r �

h
p n̂H( ~f) �(x3)

i
(1a)

where c0 is the ambient sound speed and n̂ is the unit

surface normal which, for the present case, is equivalent to

ê3, the unit vector in the direction of the x3-axis. H is

the Heaviside step function and � the Dirac delta function.

Evaluating the divergence in Eq. 1(a) yields

1

c20

@2p0

@t2
�r2

p
0 = �p(x1; x2; t)H( ~f) �0(x3) (1b)

where �0(x3) denotes di�erentiation with respect to x3.

Eq. 1(b) is the wave equation with a source term, and

its formal solution in an unbounded domain requires the

Green's function �(g)=4�r, where g = � � t+ r=c0 ; and t

and � are the observer and source times, respectively. The

solution of Eq. 1(b) can then be written in the form

4 � p0(~x; t) = �
Z

t

�1

Z
<3

�(g)

r
p(y1; y2; �)H( ~f) �0(y3)d~y d�

Now, let � ! g and integrate with respect to g. The result

can be written

4 � p0(~x; t) = �
Z
<3

1

r
[ p ]retH( ~F ) �

0
(y3)d~y (2a)

where the subscript \ret" denotes evaluation at retarded

time � = t� r=c0, and ~F is

~F(y1; y2; ~x; t) = ~f(y1; y2; t � r=c0) = [ ~f ]ret (2b)

Integration with respect to y3 on the right-hand side of Eq.

2(a) yields

4 � p0(~x; t) = �
Z
<2

@

@y3

�
[ p ]ret

r
H( ~F)

�
y3=0

dy1 dy2 (3a)

2
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Performing the di�erentiation in the integrand of Eq. 3(a)
yields

@

@y3

�
[ p ]ret

r
H( ~F)

�
=

1

c0 r
[ r̂3 _p ]retH( ~F )

+
1

r2
[ r̂3 p ]retH( ~F ) (3b)

+
1

c0 r

�
@ ~f

@�
r̂3 p

�
ret

�( ~F )

where _p is the time derivative of pressure evaluated relative
to an observer that is �xed with respect to the medium at

rest, and r̂3 is the third component of the unit radiation

vector r̂ = ~r=r. Clearly, then, r̂3 = ê3 � r̂ = cos � ; where
� is as shown in Fig. 1. The �rst and second terms on the

right-hand side of Eq. 3(b) are of the similar form QH( ~F ).

In Ref. 10, it is shown that the integration of these two
terms in Eq. 3(a) can be writtenZ

<2

QH( ~F)dy1 dy2 =

Z
~F>0

Qd� =

Z
~f>0

Q

[ 1�Mr ]ret
dS

(4a)

where d� is the element of the surface area of the acoustic

planform of ~f > 0 . Also, Mr = ~M � r̂ is the Mach number
in the radiation direction, where ~M = ~V =c0 is the local

Mach number vector of the surface.

The integrated value of the third term on the right-hand

side of Eq. 3(b) is determined as follows. This integral is

of the form

I =

Z
<2

q(y1; y2) �( ~F ) dy1 dy2 (4b)

The di�erential surface element dy1dy2 can be written10

dy1 dy2 = dL dN =
dL d ~F
jr2

~F j (4c)

where dL and dN are di�erential elements of arclength that

are, respectively, parallel and normal to the the surface
edge de�ned by ~F = 0, as shown in Fig. 2. The notation r2

denotes the surface gradient in the y1 y2-plane. Moreover,

it can be shown.10 that

dL
jr2

~F j =
d`

[ 1�Mr ]ret
(4d)

where d` is an element of arclength along the surface edge

de�ned by ~f = 0 . Eq. 4(b) can now be written

I =

Z
<2

q(y1; y2) �( ~F )
dL d ~F
jr2

~F j

=

Z
~F=0

q(y1; y2)

jr2
~F j dL (4e)

=

Z
~f=0

q(y1; y2)

[ 1�Mr ]ret
d`

Note that the surface time derivative @ ~f=@� in Eq. 3(b),

and contained in q(y1; y2) in Eq. 4(e), is referenced to the

undisturbed medium. However, @ ~f=@� can be related to

the material derivative D ~f=D� in the reference frame of

the moving surface, by

D ~f

D�

����
~f=0

=
@ ~f

@�
+ ~V � ~r ~f =

@ ~f

@�
+ ~V � �̂ (5a)

dL

dN
F = 0~

( F > 0 )
~

Fig. 2 Di�erential surface element in Eq. 4(c).

where the subscript \ ~f = 0" denotes the reference frame of

the moving surface. Furthermore, when referenced to the

moving surface, D ~f=D� must be zero, and it follows from

Eq. 5(a) that @ ~f=@� = �~V � �̂.
All three terms on the right-hand side of Eq. 3(b)

are now integrated in Eq. 3(a) over the physical surface
~f(x1; x2; t) � 0, using 4(a) and 4(e). Before writing the
�nal solution to Eq. 1(a), note that _p is referenced to the

medium at rest, e.g. as measured by a transducer that re-

mains stationary as the surface passes by it. The quantity
_p can be related to @p=@� , the time derivative of pressure in

the reference frame of the moving surface, e.g. as measured

by a transducer attached to the surface. This relation is

_p =
@p

@�
+ ~V � ~rp = @p

@�
� V

@p

@s
(5b)

where @p=@s is the gradient of p in the direction of ~V , and

V is the local magnitude of ~V . The minus sign in Eq. 5(b)

results from the fact that the surface gradient and velocity

are measured from opposite directions (Fig. 1).

Incorporating all of the above results into Eqs. 3(a,b),
the solution of Eq. 1(a) can now be written. The result is

Formulation 1B,

4�p
0
(~x; t) =

Z
~f>0

�
( @p=@� � V @p=@s ) cos �

c0 r ( 1�Mr )

�
ret

dS

+

Z
~f>0

�
p cos �

r2 ( 1�Mr )

�
ret

dS (6)

�
Z
~f=0

�
M� p cos �

r ( 1�Mr )

�
ret

d` ;

whereM� = ~M � �̂, the Mach number in the direction of �̂.

The �rst and third integrals in Eq. 6 represent the sound

radiated to the far �eld, whereas the second integral rep-

resents radiation to the near �eld. It is noteworthy to

consider the relative contributions of the terms in Eq. 6,

under the conditions of low Mach number and an observer
in the acoustic far-�eld, i.e.

M � 1 ; r � � (7)

where � is a typical acoustic wavelength of interest. With

respect to M and r, the surface far-�eld integral, i.e. the

�rst integral in Eq. 6, is proportional to 1=r, whereas the

second and third integrals are proportional to 1=r2 and

M=r, respectively. Therefore, the far-�eld surface integral

dominates the signal under the conditions in Eq. 7.

3
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Note, again, that Eq. 6 is valid for the case of non-
uniform 
ow. Therefore, Eq. 6 can be used, as is, to

predict loading noise from rotating surfaces. Its predeces-
sor, Formulation 1A,5 is signi�cantly more complicated in

its rotational form, and cannot be approximated by only

one surface integral in the far �eld. Such a signi�cant sim-

pli�cation for far-�eld calculations makes Formulation 1B

more suitable for statistical analysis of broadband sources

for rotating surfaces. A statistical formulation based on
Eq. 6 will be addressed in Section 5. However, the focus

of the current work is the time-domain application of For-

mulation 1B , as will be demonstrated in the following two
sections.

3. Sinusoidal Gust of Constant Frequency

Any noise prediction made with Eq. 6 will be only as
good as the input surface pressure p(~y; t). The current

thinking is that such time-dependent pressure data would

result from experimental measurement or a computational

uid dynamics (CFD) calculation. However, in this initial

work, an analytic expression is used for p(~y; t) to serve as

input data for the new acoustic formulation. To this end,
an analytic formulation from thin-airfoil theory will be used

to describe the unsteady surface pressure that results from

a sinusoidal gust of constant frequency. This particular
surface pressure formulation is chosen as an example that

will be used in this section to establish the equivalence of

Formulation 1B and Formulation 1A5 and to examine the
velocity scaling properties of Formulation 1B. In addition,

the frequency-dependent directivity of the far-�eld sound

produced by this sinusoidal gust is discussed.

3.1 Surface Pressure from Thin Airfoil Theory

Consider a rectangular 
at plate, in rectilinear motion,

as in Fig. 3. The velocity vector ~V = [�U;0; 0]T , where U
is a constant subsonic speed. For the following examples,

the plate's surface and its boundary, ~f � 0, are de�ned by

f 0 � x1 � Lc g � f�b � x2 � b g. This surface will be
presumed to have an unsteady pressure distribution that

is analytically prescribed from linearized airfoil theory, as

discussed below.

In Refs. 3 and 4, Amiet presents closed-form expressions
for the unsteady pressure on the surface of an in�nite-span,

thin airfoil. The airfoil is presumed to move rectilinearly

LC

2b

x1
0

x

(x1, x2, x3)

V

x3

x2

Fig. 3 Schematic for the constant-frequency loading noise
problem in Section 3.

through a sinusoidal gust. Analytical methods are used to
solve the two-dimensional, time-dependent linear potential

equation by representing the solution as a product of spa-
tial and temporal solutions. The solution is represented

as a truncated series in which higher-order terms are ne-

glected (See Refs. 3 and 4 for details.).

A complex-valued representation for the airfoil surface

pressure is assumed to arise from a stationary gust in one
spatial dimension. This gust can be written in the \sta-

tionary" variable x1 � Ut as

w(x1 � Ut) = w0 e
�ik(x1�Ut) (8)

where k = !=U is the stream-wise convective wave number,

and w0 is the gust amplitude. This gust and the airfoil
surface pressure that it generates are, for now, considered

as functions of a single amplitude and frequency.

The unsteady surface pressure that arises due to the

incidence of a gust of the form in Eq. 8 can be written

�P (x1; t) = �0Uw0 g(x1; �k) e
ikUt (9a)

where �0 is the ambient density, �k = kLc=2 is the re-

duced frequency (based on the semi-chord), and g(x1; �k)
is a transfer function whose form is dependent on the fre-

quency of interest. In Ref. 8, the suggested parameter to

delineate between the low and high frequency regimes is
� =M�k=�2, where � =

p
1�M2.

For low frequencies, � < 0:4, the transfer function is

g(x1; �k) =
1

�

�
Lc

x1
� 1

� 1

2

GS(�k
�)ei

�k�q(x1;M)
; � < 0:4 ;

(9b)

where �k� = �k=�2, GS is the classical Sears function,11

which, for the present work, is approximated by

GS(�k
�) �

�
1

1 + 2:4�k�
+ 2��k�

�� 1

2

; (9c)

as suggested in Ref. 8, and

q(x1;M) =M2(2x1=Lc�1) + (1��) lnM + � ln(1+�)� ln 2

(9d)

For high frequencies, � � 0:4, the transfer function

is the sum of a leading-edge solution and a trailing-edge

correction,4 i.e.

g(x1; �k) = ( g1 + g2 ) e
�i [2�(1�M)x1=Lc+�=4] ; � � 0:4

(9e)

where

g1(x1; �k) =
1

[ 2��kx1(1 +M)=Lc ]
1

2

(9f)

g2(x1; �k) =
�1 + ( 1+i )E�[ 4�(1� x1=Lc) ]

[ 2��k(1+M) ]
1

2

and

E
�(�) =

Z
�

0

e�iu

( 2�u )
1

2

du � C(�)� i S(�) (9g)

4
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The quantities C(�) and S(�) are the Fresnel cosine and
sine integrals, and will be evaluated numerically by the

formulas derived by Boersma.12 The �nal representation
for the unsteady surface pressure p(x1; t) assumed to be a

real quantity, is

p(x1; t) = <ef�P (x1; t)g (9h)

Note that Eqs. 9(a-h) represent the pressure distribution
on the upper surface of the airfoil and that this pressure

is assumed to be antisymmetric between the upper and

lower surfaces. Note, also, some di�erences between Eqs.
9(e-f) and their counterparts in Refs. 3 and 8. Such dif-

ferences include the choice of coordinate-axes origin and

the spatial normalization employed by the author. An-
other di�erence arises from the use of complex conjugates

here, which serves to make the present notation more con-

sistent with the eventual broadband representation in Ref.
8, which is also employed in the Section 4. The above sur-

face pressure was originally proposed in order to derive an

expression for unsteady lift which was ultimately incorpo-
rated into a frequency-domain acoustic formulation.3;8;13

However, in the present work, the unsteady pressure itself

will be used as input to Eq. 6 for a time-domain prediction.

3.2 Grid Re�nement Study

The surface pressure in Eqs. 9(a-h) is now used to numer-

ically demonstrate the equivalence of Formulation 1B and

and the loading-noise terms of Formulation 1A5. Formula-

tion 1A forms the basis of WOP-WOP, a rotor noise predic-

tion code developed at NASA Langley Research Center.14

For the prediction of loading noise from an airfoil in uni-

form rectilinear motion, Formulation 1A simpli�es to

4�p0(~x; t) =

Z
~f1>0

�
@p=@� cos �

c0 r ( 1�Mr )2

�
ret

dS

+

Z
~f1>0

�
p cos �

r2 ( 1�Mr )2

�
ret

dS (10)

�
Z
~f1>0

�
p cos � (Mr �M2)

r2 ( 1 �Mr )3

�
ret

dS

Note that the entire formulation here is integrated on the

surface interior. At �rst glance, the form of Eq. 10 appears
no more complex than Eq. 6, but only because of the sim-

plicity of uniform, rectilinear motion. Eq. 10, as written

above, is not applicable to a rotating surface, but Eq. 6 is.
The loading-noise terms of the full Formulation 1A are, in-

deed, applicable to rotational 
ow, but the full formulation

is more complex than Eq. 10.

The far-�eld noise radiated from a thin airfoil in a one-

dimensional, single-frequency sinusoidal gust is now calcu-

lated, using Eq. 6 and Eq. 10. Let p01B and p01A denote

the sound calculated by Eqs. 6 and 10, respectively. If the

input surface pressure p(~y; t) is known analytically at any

point on the airfoil surface, then the only non-machine-zero

error made in the numerical solution of Eqs. 6 and 10 is the

error associated with the quadrature formula that is cho-

sen to perform the surface and contour integrations. In this

case, the mid-point rule is the quadrature of choice. There-

fore, the equivalence of Eqs. 6 and 10 is demonstrated if the

di�erence j p01B � p01A j diminishes in mesh re�nement like

the cummulative error expected from the mid-point rule,
i.e. that the error is O(�x2).

The plate's rectangular dimensions are determined by a

chord length of Lc = 0:5 meter and a span of 2b = 2:0

meters. The plate is moving at a Mach number of 0:2,
and the sound speed is taken to be 343 m/sec. The am-

bient density �0 = 1:23 kg/m3, and the upwash amplitude

is w0 = 0:05U , i.e. �ve percent of the free stream. The
observer position for this test case is ~x = [�1; 0; 1]T , in
meters. Fig. 3 roughly depicts this relative observer posi-

tion, although not to scale.

The calculation is performed for one time period of the
surface pressure 
uctuation at frequencies of f = 25 Hz

and f = 1 kHz, with 32 time-steps in each period. These

choices of frequency, at the prescribed observer location,
will test both the near-�eld and far-�eld equivalence of the

two formulations. Note that the transfer functions in Eqs.

9(b,f) are singular at x1 = 0, and the spatial derivative of
Eq. 9(f) is singular at x1 = Lc. Although both singulari-

ties are integrable, they would cause the quadrature error

to deviate from that of the mid-point rule which, by its
de�nition, requires su�cient smoothness throughout the

interval of integration. Therefore, the domain of stream-

wise integration is restricted to an interval of the form

"Lc � x1 � (1� ")Lc (11)

where " is a small, positive parameter.

Each calculation is performed on a sequence of six sur-
face grids: f10�40g; f20�80g; f40�160g; f80�320g; f160�
640g, and f320� 1280g. Grid clustering is performed near

the leading and trailing edges of the plate in order to acco-

madate the parameter " = 0:02 on the coarser meshes. The

maximum values of j p01B � p01A j during each time period,

are shown as a function of the number of grid points on a

log-log plot in Fig. 4. The abscissa Nx is the number of

surface elements in x1. The dashed line represents a �cti-

tious quantity whose values are speci�cally calculated to be

directly proportional to N�2
x . Clearly, the slopes of both

calculations are visibly parallel to a slope of {2, thereby

N
100 200 300 400

10-4

10-3

10-2

10-1

100

f = 25 Hz

f = 1 kHz

Slope = -2

x

p’
-

p’ 1A
1B

|
| m

ax

Fig. 4 Grid re�nement validation for equivalence of For-

mulations 1A and 1B.
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demonstrating that

j p01B � p
0

1A j = O(N
�2
x ) = O(�x

2
1) ;

which is the cummulative error expected from the mid-

point rule of integration.

3.3 Velocity Scaling Laws

Attention is now turned to the way in which the intensity

of the far-�eld noise, as predicted by Eqn. 6, will scale as a

function of velocity, when the surface pressure is described

by Eqs. 9(a-h). The physical dimensions of the plate for

this exercise are the same as for the test case above. The

conditions of a far-�eld observer in a low-Mach-number


ow (Eq. 7) will be assumed. The Mach-number range of

interest is 0:01 �M � 0:2. In addition, the proportionality

of the acoustic intensity to velocity will be determined ac-

cording to two di�erent conditions placed on the frequency

f . These two conditions will delineate between compact

and non-compact sources.

First, it will be assumed that the source is compact, i.e.

Lc � �. This condition will be achieved by requiring the
frequency to be proportional to velocity, f � U=Lc , for a

su�ciently low range of frequency. For 0:01 � M � 0:2,

f = 80Hz is referenced to M = 0:2, and f is then made

a function of velocity while requiring a constant Strouhal

number f Lc=U � 0:583. The frequency range is, then,

4Hz � f � 80Hz. Note that � < 0:4 throughout this
range.

The plate's physical dimensions are as in the above mesh

re�nement problem. The calculation is performed on a

100�400 surface grid, with the stream-wise integration in-

terval restricted as in Eq. 11, with su�cient grid clustering

near the leading and trailing edges to allow for " = 0:003.

The observer is chosen at a distance of 100 meters, directly

above the plate's center, i.e. ~x = [ 0:25; 0; 100]T in meters.

This location places the observer in the acoustic far-�eld

for the entire range of frequency.

A separate calculation is run for each Mach number

and its corresponding frequency. The upwash amplitude is

w0 = 0:05U for each of 50 equally spaced Mach numbers

between 0:01 and 0:2. The surface pressure in Eqs. 9(a-

d,h) is used as input to equation to Eq. 6 to predict the

far-�eld sound p0(~x; t). Each calculation is performed for

one acoustic period T of the corresponding frequency, with

64 time-steps. The average intensity I(~x) of the acoustic

signal at the observer ~x, assuming spherical spreading, is

then calculated by

I(~x) =
1

T

Z
T

0

[ p0(~x; t) ]2 dt

�0 c0

The average acoustic intensities for a compact source, as
a function of Mach number, are represented as squares in

Fig. 5. The slope of these results on a log-log plot can be

visually determined by proximity to the dotted line whose
slope is precisely six at every point. This U6 proportional-

ity is consistent with Curle's4 result, as expected from the

conditions placed upon the calculations.

The demonstration of a velocity scaling law is now de-
sired for a non-compact source i.e. for � > 0:4. Therefore,

the restriction that f � U=Lc must be lifted, so that f is

M

I
(x

)

0.05 0.1 0.15 0.2
10-14

10-12

10-10

10-8

10-6

10-4

Compact Source

f = 1 kHz

Slope = 6

Slope = 5

__

Fig. 5 Velocity scaling properties of Formulation 1B.

independent of U . The simplest such condition is that f

is constant, in which case the Strouhal number remains a
function of U . A series of calculations is again performed,

as above, with the only parameter change being that the

frequency is held constant at 1 kHz throughout the range
of Mach number. The input surface pressure for this case is

given by Eqs. 9(a,e-h). The computed acoustic intensities

at 100 meters are represented by circles in Fig. 5. In this

case, the acoustic intensity scales approximately as U5, a

result that is consistent with Ffowcs Williams and Hall7.

3.4 Directivity

As a �nal exercise in this section, the directivity of a

single-frequency source is examined. The radiated noise
p0(~x; t) is calculated at many locations on a circular arc in

the plane x2 = 0 that is centered on the geometric center of

the plate's upper surface, as shown in Fig. 6. The arc tra-
jectory (r;  ) is determined by r = 3 meters and 0 �  � �.

The directivity is determined by the peak pressure ampli-

tude jjp0jj that is calculated at each position on the circular

arc, during one period in time for a given frequency. The


at plate's dimensions and surface discretization are as in

b

LC

2

x1

ψ0

x

V

x3

x2

Fig. 6 Schematic for directivity calculation. Observer on
circular path in plane x2 = 0.
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Fig. 7 Directivity for two sources of constant frequency.

2-kHz results are scaled by a factor of 2.5.

the previous example, and there are 128 time-steps in a pe-

riod. The observer path, 0 �  � �, is discretized into 128

equally spaced locations. The free-stream Mach number is
0:2 and the gust amplitude is w0 = 0:05U . Fig. 7 shows

the results, in polar form, for frequencies of 1 kHz and 2

kHz. The higher-frequency results are scaled in order to
visualize both loci on the same plot. As expected, there are

twice as many lobes in the 2-kHz solution. Also, note the

frequency-dependent positions of the lobes with respect to
a �xed observer. For example, an observer at  = �=2

will receive a signal that is near the peak amplitude for the

central lobe of the 1-kHz signal, whereas the 2-kHz sig-
nal is near a local minimum for the same observer. This

frequency-dependent characteristic of directivity is men-

tioned here for future reference in the following section.

4. Broadband Prediction with
Comparison to Experiment

The analytic surface pressure in the previous section is

extended to model a broadband source on a slender airfoil

at zero angle of attack. This broadband surface pressure

is used as input to Formulation 1B to predict far-�eld

radiation, and the results are compared to experimental

measurements. Note that Amiet15 has previously proposed
a broadband solution to this problem in the time domain,

using the transfer functions in Eqs. 9(e-g). His resulting

solution was a Fourier transform of the frequency-domain
solution in Refs. 8 and 13. In the current work, the high-

frequency formulation in Section 3 is explicitly extended to

a broadband source application with user-speci�ed spectral

content.

4.1 Experiment - Incident Turbulence Noise

The experiment that is modeled in this section is re-
ported by Paterson and Amiet in Ref. 8. A NACA 0012

airfoil is placed between two vertical plates, at zero angle

of attack, in the test section of an open-jet wind tunnel.
The airfoil has a chord length of 0.23 m and a span of

0.53 m. Turbulence is generated by a grid upstream of the

airfoil. Noise propagates from the test section into an ane-
choic chamber that is instrumented with six microphones.

The microphones are located on the tunnel centerline, on

an arc of raidus 2.25 m, relative to the airfoil's geometric
center. The microphone locations on this arc are at angles

of 70, 90, 105, 120, 130, and 140 degrees, relative to the

upstream direction. Far-�eld noise measurements of the
incident turbulence on the airfoil are determined by sub-

tracting microphone measurements, with and without the
model, at each of �ve tunnel speeds: 40, 60, 90, 120, and

165 m/s.

4.2 Broadband Analysis

For prediction purposes, the airfoil is modeled as a 
at

plate in a periodic gust that gives rise to an unsteady
surface pressure that is a broadband extension of the an-

alytic formulation in Section 3. The airfoil geometry is

oriented with respect to the coordinate axes as in Fig. 3,
with f 0 � x1 � Lc g � f�b � x2 � b g, where Lc = 0.23

m and 2b = 0.53 m. As encountered by the airfoil surface

in the x1-x2 plane, the normal component of the turbulent
velocity �eld can be written

w(x1;x2;t) =

Z
1

�1

Z
1

�1

^̂w(k1;k2) e
�i [ k1(x1�Ut)+k2x2 ]dk1dk2

where ^̂w(k1; k2) is the gust amplitude wave-number

spectrum, de�ned by the inverse Fourier transform of

w(x1; x2; t). The complex-valued, unsteady surface pres-

sure arising from the incidence of a turbulent velocity �eld

of this form is given by

�P (x1; x2; t) = (12)

�0U

Z
1

�1

Z
1

�1

^̂w(k1;k2)g(x1;k1;k2)e
i ( k1Ut�k2x2 )dk1dk2

The expression for surface pressure in Eq. 13 is simpli-

�ed by the following reasoning. Amiet argues in Ref. 13

that, for an observer in the plane x2 = 0, the only spanwise

wavenumber that contributes signi�cantly to the far-�eld

sound is k2 = 0. His conclusion is derived mathematically,

in the frequency domain, for the limiting case of an airfoil of

in�nite span. From a physical standpoint, this conclusion
makes sense for an observer in a location that is symmetric

to the airfoil span. The e�ect on the far-�eld acoustics of

any gust that is skewed to the airfoil leading edge by some
angle � will be canceled by another gust skewed at an an-

gle of ��. In the case of a �nite-span arifoil, Amiet argues

that this simpli�cation is still valid as the quantity Mk1b

becomes large. i.e. in the high-frequency limit. Follow-

ing this line of reasoning, the x2 dependence in �P also

vanishes, by Eq. 12, and the surface pressure becomes

�P (x1; t) = �0U

Z
1

�1

^̂w(k1;0) g(x1;k1;0) e
i ( k1Ut ) dk1 (13)

The evaluation of the surface pressure in Eq. 13 is accom-

plished by �rst recognizing the turbulent 
uctuations as a
stochastic process. This process can be approximated by a

truncated series whose limit exhibits the required relation-

ship between the autocorrelation and the power spectrum
of that process. (See, for example, Ref. 16.). This rela-

tionship is achieved by evaluating the spectral amplitudes
^̂w(k1; k2) as a function of the power spectral density (PSD)
of w(x1; x2; t). To this end, the in�nite wave-number do-

main, �1 < k1 <1, in Eq. 13 is integrally discretized and

truncated such that k1;�N < k1;n < k1;N . The largest wave
number k1;N represents an \upper-cut-o�" wave number,

beyond which the spectral density amplitude is considered
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negligible or is out of range of experimental measurement.
The unsteady surface pressure in Eq. 13 is then approxi-

mated by

�P (x1; t) � �0U

NX
�N

An;0 e
i�n g(x1; k1;n; 0) e

i ( k1;nUt )

(14a)
k1;n = n�k1 ; n = 0;�1;�2; : : : ;�N
�k1 = k1;N =N

The phase angles f�ng are independent random variables

uniformly distributed on [ 0; 2� ]. The transfer function
g(x1; k1;n; 0) is an extension of the high-frequency function

in Eqs. 9(e-g), and takes the slightly modi�ed form

g(x1; k1;n; 0) = ( g1 + g2 )e
�i [2�n(1�M)x1=Lc+�=4�

�k1;n ]

where g1 and g2, now functions of k1;n, are otherwise iden-

tical to Eq. 9(f),

g1(x1; k1;n) =
1

[ 2��k1;nx1(1 +M)=Lc ]
1

2

(14b)

g2(x1; k1;n) =
�1 + ( 1+i )E�[ 4�n(1� x1=Lc) ]

[ 2��k1;n(1+M) ]
1

2

and E� is the same complex combination of Fresnel inte-

grals as in Eq. 9(g). The low-frequency transfer function
is not used in these broadband predictions because the ex-

perimental facility is anechoic for frequencies above 200 Hz,

and the parameter � is greater than 0.4 at this frequency
or above, for all �ve tunnel speeds.

The spectral coe�cients fAn;0g are evaluated by

An;0 = [Sww(k1;n; 0)�k1 �k2 ]
1

2 (14c)

where Sww(k1; k2) is the two-component power spectral

density of w. As this grid-generated turbulence is assumed
to be homogeneous and isotropic, the PSD is evaluated by

the von Karman formula.17 The formula for Sww(k1; k2)

that is used in the present calculations is derived from von
Karman's energy spectrum in Appendix I of Ref. 13.

Sww(k1; k2) =
4

9�

u2

k2e

k̂21 + k̂22

[ 1 + k̂21 + k̂22 ]
7

3

(14d)

where u2 is the stream-wise turbulent energy, and

k̂i =
ki

ke
; ke =

p
�

L1

�( 5
6
)

�( 1
3
)
; (14e)

and L1 is the stream-wise integral length scale

L1 =

Z
1

0

Rww(x1) dx1

where Rww is the upwash correlation function de�ned by

Rww(r) = w(x1; t)w(x1 + r; t)

= lim
T!1

1

T

Z
T

0

w(x1; t)w(x1 + r; t)dt

Note that the two-component formula in Eq. 14(d) was

derived in Ref. 13 by integrating the von Karman energy

spectrum over all k3 components. The k2 component is

then set to zero for the present calculations. Values for
u2 and L1 are determined by measurement. In Ref. 18,

Fink reports that the turbulence intensity that results from
the grid in question can be approximated by the empirical

formula

( u2 )
1

2

U
= 0:04

�
U

Uref

�
�0:2

(14f)

where the reference speed is Uref = 60 m/s. Fink18 also
reports a measured value for the integral length scale as

L1 = 3.175 cm

All of the above expressions and measurements are in-

corporated into Eq. 14(a). The �nal representation for the
unsteady broadband pressure on the airfoil's upper surface

is then given by the real part of Eq. 14(a). This broad-

band surface pressure is used as input to Formulation 1B
to predict the far-�eld noise p0(~x; t).

Using symmetry arguments and algebraic manipulation,
the indicial bounds for the surface pressure's spectral rep-

resentation are altered so that the domain includes only
positive wavenumbers. The resulting real-valued surface

pressure on the airfoil's upper surface can be written

p(x1; t) = 2�0U

NX
1

An;0[Bn cos(k1;nUt +�n � �n)

+ Dn sin(k1;nUt+ �n � �n) ] (15a)

where the upwash amplitudes An;0 are evaluated by Eq.

14(c) and Sww(k1; k2) is described in Eqs. 14(d-f). The
quantities Bn, Dn, and �n are given by

Bn = g1(x1; k1;n) +
C(�n) + S(�n)� 1

[ 2��k1;n(1 +M) ]
1

2

Dn =
S(�n)� C(�n)

[ 2��k1;n(1 +M) ]
1

2

(15b)

�n = 2 �n(1 +M)
x1

Lc
� �k1;n +

�

4

where g1(x1; k1;n) is evaluated in Eq. 14(b), and C(�n) and
S(�n) are the Fresnel cosine and sine integrals in Eq. 9(g)

with �n = 4 �n( 1� x1=Lc ). The summation in Eq. 15(a)

begins at n = 1 because Sww(0; 0) = 0, by Eq. 14(d).

At this point, the value of �k2 in Eq. 14(c) is unknown

because there is no explicit span-wise integration, thereby

giving rise to an adjustible constant. This constant is one

of scale only, and found to have no e�ect the shape of the
far-�eld spectrum. Furthermore, this scale factor is found

to be constant for all data points, i.e. is independent of

all parameters considered (tunnel speed, frequency range,

band-width, airfoil span, etc.).

4.3 Time-Domain Predictions

The lower frequency bound, and therefore the funda-
mental frequency, for all �ve calculations is chosen at 10

Hz. The upper frequency for the predictions is chosen ac-

cording to the upper frequency for which measurements are
available for each tunnel speed. For U = 40, 60, and 90

m/s, the upper bound is fN = 2.5 kHz. The upper bounds

for U = 120 and 165 m/s are fN = 3.5 kHz and 4.5 kHz,
respectively. For all �ve calculations, the numerical band-

width is �f = 10 Hz. Each calculation is performed for one

8

American Institute of Aeronautics and Astronautics



period of the lowest frequency, i.e. T = 0:1 second. The
numerical solution is sampled at the Nyquist frequency, i.e.

�t = T=2N . The calculation is performed on a 100 � 230
surface grid, with the stream-wise integration interval re-

stricted as in Eq. 11, with su�cient grid clustering near

the leading and trailing edges to allow for " = 0:003.

The experimental microphone position for which com-

parisons are made is at a distance of 2.25 m from the model,
and at an angle of 90 degrees relative to the model's geo-

metric center. The coordinate system for the calculation

is such that the x2-axis is coincident with the center-span
line, so that the microphone position is in the plane x2 = 0,

as in Fig. 6. The measured observer position for the pre-

diction is, then, ~x = [ 0:115; 0; 2:25 ]T in meters.

The position of the microphone relative to the airfoil is
corrected for refraction due to the presence of a shear layer

that forms downstream of the upper lip of the square nozzle

exit and is positioned between the model and the micro-
phone. This correction is based on geometrical acoustics

with an assumption of a zero-thickness shear layer, and is

reported in Ref. 19. Shear-layer corrections that are based
on such formulations19 are reasonable for the present case

with the microphone directly above the source. The re-

quired correction in the microphone position is signi�cant.
At a measured angle of 90 degrees, the corrected angles

ranged from approximately 84.5 degrees for U = 40 m/s to

68.2 degrees for U = 165 m/s.

In addition, the amplitude of the radiated noise is also
corrected for the presence of the shear layer, although at a

measured angle of 90 degrees, the amplitude correction is

not signi�cant, especially for the lower tunnel speeds. The
computed sound pressures p0(~x; t) were corrected by factors

ranging from approximately 0.997 for U = 40 m/s to 0.942

for U = 165 m/s. The microphone position is corrected for
the shear-layer in a pre-processing step. After the far-�eld

noise is calculated at the corrected position, the results are

then post-processed for amplitude correction. In this way,
the corrected predictions can be compared to the experi-

0 0.025 0.05 0.075 0.1
-8
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-4

-2

0

2
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time , seconds

p’
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P
a.

Fig. 8 Predicted far-�eld signal, U = 165 m/s. Micro-
phone at 900, 2.25 m above airfoil center.

mental results \as measured."

Fig. 8 shows the far-�eld signal p0(~x; t) that is predicted
by Formulation 1B, for one fundamental period in time, at

the experimental microphone location, for a tunnel speed

of 165 m/s. Shear-layer corrections for amplitude and di-
rectivity are included in this plot. In order to compare with

experimental measurements in Ref. 8, the time-domain re-

sults from the numerical predictions, for all �ve tunnel
speeds, are Fourier analyzed and converted to the fre-

quency domain. The resulting frequency-domain solution,

p0(fn), is used to compute the sound pressure level (SPL)
spectrum of the far-�eld radiation. These sound pressure

levels are determined by

SPL(fn) = 10 log

(
p0 2(fn)

p 2
ref

)
(16)

where the reference pressure is pref = 2 � 10�5 Pa. The

SPL's are converted to a 1 Hz band-width by reducing the

values in Eq. 16 by 10log(�f). This narrow-band conver-

sion is consistent with the experimental SPL's which were

measured at a band-width of 55.7 Hz and reduced by 17.5

dB.8

The predicted far-�eld spectral density for the �ve tun-

nel speeds is shown Fig. 9 along with experimental mea-

surements from Ref. 8. The solid symbols represent those

measurements for which the di�erence between the noise
with and without the airfoil model was considered too

small, and are therefore subject to greater uncertainty. The

agreement with the measured data is very good. The no-
ticeable \humps" in the predicted spectra are, most likely,

the result of the changing placement of lobes, as a function

Frequency, Hz

S
P

L,
dB

0 1000 2000 3000 4000 5000
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90

Prediction
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90 m/s

120 m/s
165 m/s
SN40
SN60
SN90
SN120

Experiment

Predictions

40 m/s

60 m/s

90 m/s

120 m/s

165 m/s

Fig. 9 Predicted and measured far-�eld noise spectra.

Microphone at 900, 2.25 m above airfoil center. Experi-

mental data reproduced from Ref. 8. Solid symbols denote
low signal-to-noise ratio.
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of frequency, relative to the observer. This phenomenon
was described in Section 3 (Fig. 7). That the current pre-

dictions are nearly identical to the predictions in Ref. 8 is
not surprising, because the current predictions rely upon

the same unsteady surface pressure formulation as those in

Ref. 8.

5. Statistical Formulation

Often, when aeroacoustic experiments are performed,

surface-pressure correlations are extremely useful in char-
acterizing noise due to an air
ow over a model. Under

certain conditions, Formulation 1B is readily transformed

into an expression that aids in statistical analysis of broad-
band noise. Recall that, in the case of low Mach number

and with an observer in the acoustic far �eld (Eq. 7), the

signal is dominated by the �rst integral in Eq. 6. Also,
recall that the spatial and temporal derivatives of pressure

in this integral can be written as a single time derivative of

pressure when evaluated in a reference frame that is �xed
relative to the medium at rest, as in Eq. 5(b). In this �xed

reference frame, the far-�eld sound at low Mach number is

approximated by

4�p0(~x; t) �
Z
~f>0

�
_p cos �

c0 r (1�Mr)

�
ret

dS (17)

In addition, assume that the observer is many correlation

lengths into the far �eld, i.e. r � `i, where

`i =
1

Rww(0)

Z
1

0

Rww(xi) dxi ; i = 1; 2

In this case, the values of r,Mr , and � are nearly invariant

within a correlation area A` of size `1 by `2, and Eq. 17

can be re-written as

4�p0(~x; t) �
KX
1

cos �k

c0 rk (1�Mrk
)

Z
A`

k

_p(~y; �) dS (18)

where rk, �k, andMrk
are constant values chosen to replace

their nearly invariant counterparts in retarded time, within

each correlation area.

If the autocorrelation operator is applied to Eq. 17, the

result is

16�
2
Rp0p0 (��) = 16�

2
p0(~x; t) p0(~x; t+ ��) (18a)

�
KX
1

�
cos �k

c0 rk (1�Mrk
)

�2 Z
A`

k

R _p _p(~y; ~�; ��) d~� d~y

where

R _p _p(~y; ~�; ��) = _p(~y; �) _p(~y + ~�; � + ��) (18b)

The ability to measure such time-derivative correlations,

relative to the medium at rest, is already in hand.20 The

potential usefulness of this alternate formulation is clear.
After the autocorrelations in Eq. 18(b) are determined ex-

perimentally, and used as input to Eq. 18(a), then the

Fourier transform of Eq. 18(a) produces the far-�eld noise
spectrum. The further development and testing of this

statistical formulation is a topic of ongoing research for its

potential application to trailing edge noise prediction.

Concluding Remarks

A new formulation for the solution of the loading term
of the Ffowcs Williams-Hawkings equation has been de-

rived. The potential usefulness of time-domain solutions

for acoustic predictions with Formulation 1B has been
demonstrated. This new far-�eld formulation has some

advantages over previous formulations. The formulation

is both simple and has broad application, including the
case of non-uniform 
ow. In addition, the dominance of

only one term in this formulation makes this solution much

easier to pose in correlation-function form for statistical
analysis of broadband noise. Such an alternative formula-

tion can be used to aid acoustic experiments where surface

pressure correlations are measured.
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